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1．Introduction 

1.1 Dictionary learning model  

Given an image in patched form X, to learn dictionary from it, we need to solve 

the following optimization problem： 

𝑚𝑖𝑛
𝐷, 𝐴

 
1

2
‖𝑋 − 𝐷𝐴‖𝐹

2 + 𝜆‖𝐴‖0 

where 

• ‖ · ‖𝐹
2   is the sum of the squares of all the elements; 

• ‖ · ‖0  returns the number of non-zeros elements; 

• λ > 0 is a balancing weight. 

1.1.1 ℓ1-norm with soft-thresholding shrinkage 

Apparently, the above problem is non-convex due to ‖ · ‖0 . To circumvent this 

difficulty, we replace it with the ℓ1-norm, leading to 

𝑚𝑖𝑛
𝐷, 𝐴

 
1

2
‖𝑋 − 𝐷𝐴‖𝐹

2 + 𝜆‖𝐴‖1 

According to the sample code, we use soft-thresholding shrinkage as a convex 

approximation of the ℓ1-norm to make the problem optimizable. In the process of 

dictionary learning, ℓ1-norm regularization is applied to the coefficient matrix A, 

aiming to induce sparsity.  

We modified part of the code to adapt it for color images, and then changed the 

initial value of matrix C so that it is not equivalent to matrix A. We further adjusted the 

parameters p、gap、λ、μ following the sample code and obtained the Peak Signal-to-

Noise Ratio (PSNR) values for 18 McM images. 

1.1.2 Using genetic algorithms adapted to non-convex optimization 

In the example algorithms provided by the teacher, the descent methods adopted 

in the optimization process of D(Dictionary) and A (Coefficient matrix) are both 

gradient descent methods, which have a high probability of falling into the local optimal 

solution. Among them, the choice of D plays a decisive role; It is considered that if D 

can be randomly selected all the time in the optimization process, the probability that 

the optimization result is a local optimal solution rather than a global optimal solution 



can be greatly reduced. Therefore, it is considered to replace the descending method of 

D with a genetic algorithm that can adapt to non-convex optimization. 

𝑚𝑖𝑛
𝐷, 𝐴

 
1

2
‖𝑋 − 𝐷𝐴‖𝐹

2 + 𝜆‖𝐴‖0 

The detailed introduction of this method is in Section 1.2.7. 

1.2 optimization algorithm 

Problem： 

min
𝐷

   
1

2
‖𝑋 − 𝐷𝐴‖2 + 𝜆‖𝐴‖1 

s. t.   ‖𝑑𝑖‖2 = 1 

gradient： 

∇𝑓0(𝐷) = (−𝑋 + 𝐷𝐴)𝐴𝑇 

Hessian Matrix： 

∇2𝑓0(𝐷) = 𝐴𝐴𝑇 

1.2.1 Gradient Descent 

Gradient descent minimizes the objective function through iterative optimization. 

In each iteration, the algorithm computes the gradient of the objective function with 

respect to the parameters, and then updates the parameters along the negative gradient 

direction to gradually reduce the value of the objective function. 

Update: 

𝐷 ≔ 𝐷 − 𝛾(𝐿𝐷)∇𝑓0(𝐷) 
Advantages: 

1) Simple and intuitive: The core idea of gradient descent is intuitive and 

straightforward, making it easy to understand and implement. 

2) Fewer computations per iteration: It only requires the computation of Lipschitz 

continuous parameters and gradients. 

Disadvantages: 

1) Sensitivity to step size: The choice of step size significantly impacts the 

algorithm's performance. Too small of a step size may lead to slow 

convergence, while too large of a step size may result in oscillations or failure 

to converge. 

2) Poor performance on "valley-shaped" functions: Due to the poor flexibility in 

selecting the descent direction, gradient descent often oscillates between two 

sides of a narrow "valley-shaped" objective function, leading to a significantly 

increased number of iterations. 



1.2.2 Conjugate Gradient 

The basic idea of conjugate gradient method is to search through a series of 

conjugate directions in order to converge to the optimal solution more quickly. At each 

iteration, the conjugate gradient method selects a direction that is conjugate to the 

previous search direction to reduce the search space. 

Update： 

𝐷 ≔ {
𝐷 − 𝛾(𝐿𝐷)∇𝑓0(𝐷), 𝑘 = 1

𝐷 − 𝛾(𝐿𝐷)(∇𝑓0(𝐷))
⋆
,   𝑜. 𝑤.

 

Advantages: 

1) Fast convergence rate: Compared with gradient descent method, conjugate 

gradient method usually converges to the optimal solution faster. 

2) Symmetric positive definite matrices: The conjugate gradient method is 

particularly suitable for solving linear systems with symmetric positive 

definite matrices, which is common in some optimization problems. 

Disadvantages: 

1) It is difficult to apply to non-quadratic problems: conjugate gradient method 

is not effective in solving non-quadratic problems, or it cannot converge. 

2) Additional information needs to be stored: In order to calculate conjugate 

directions, the previous gradient and search direction need to be stored, adding 

some computation and memory overhead. 

3) Prone to matrix singularity: When taking the conjugate of the gradient, there 

may be a case of matrix singularity, resulting in the calculation can not be 

carried out. 

1.2.3 Newton’s Method 

The basic idea of Newton's method is to use the second-order information of the 

objective function (Hessian matrix) to guide the search direction, so as to approximate 

the optimal solution faster. At each iteration, Newton's method uses the second 

derivative of the objective function (Hessian matrix) to update the current solution 

vector. 

Update: 

𝐷 ≔ 𝐷 − ∇2𝑓0(𝐷)−1∇𝑓0(𝐷) 
Advantages: 

1) Fast convergence: Compared with first-order methods, Newton's method 

usually converges to the optimal solution faster. 

2) Second-order information utilization: The second-order information of the 

objective function is used to make the search direction more accurate. 

3) One time convergence of quadratic form: For quadratic form, the first step can 

be convergent to a minimum. 

Disadvantages: 



1) Hessian matrix calculation, storage and inversion: the cost of computing and 

storing Hessian matrices can be very high, especially in high-dimensional 

problems, the cost of inverse operations is extremely high, often leading to a 

significant increase in the cost of each step of the calculation. Although 

Newton's method may have fewer iterations, the calculation speed of each step 

is often much greater than other methods, especially for the case of high 

dimension in this project. 

2) Not necessarily convergent: In some cases, Newton's method may be unstable 

or not convergent because of the non-positive nature of the Hessian matrix. 

3) Initial point selection: The selection of initial point may affect the performance 

of the algorithm. 

 

1.2.4 Broyden-Fletcher-Goldfarb-Shanno 

BFGS method belongs to a kind of quasi-Newtonian method. Its main idea is to 

dynamically adjust the search direction and step size to approximate the optimal 

solution by estimating the inverse matrix of the second derivative of the objective 

function (Hessian matrix). 

Update: 

𝑔(𝑘) = 𝐷(𝑘+1) − 𝐷(𝑘) 

𝑦(𝑘) = ∇𝑓0(𝐷(𝑘+1)) − ∇𝑓0(𝐷(𝑘)) 

𝜌(𝑘) =
1

(𝑦(𝑘))𝑇𝑔(𝑘)
 

𝐻(𝑘+1)

= {
𝐼,                                                                                                                                        𝑘 = 1

(𝐼 − 𝜌(𝑘)𝑦(𝑘)(𝑔(𝑘))
𝑇

)
𝑇

𝐻(𝑘) (𝐼 − 𝜌(𝑘)𝑦(𝑘)(𝑔(𝑘))
𝑇

) + 𝜌(𝑘)𝑦(𝑘)(𝑔(𝑘))
𝑇

, 𝑜. 𝑤.
 

𝐷(𝑘+1) ≔ 𝐷(𝑘) − 𝐻(𝑘)∇𝑓0(𝐷(𝑘)) 

Advantages: 

1) Avoiding the calculation of the inverse matrix of Hessian matrix: BFGS method 

avoids a large number of inverse operations through the first-order estimation 

of the inverse Hessian matrix, especially for high-dimensional problems, 

greatly reducing the computational overhead of Newton method. However, 

compared with first-order methods such as gradient descent, the calculation 

speed is still slow. 

2) Global convergence: BFGS method has global convergence and can be applied 

to general nonlinear optimization problems. 

3) Avoiding the storage of the complete Hessian matrix: BFGS avoids the direct 

storage and calculation of the Hessian matrix by maintaining the estimation of 

the inverse Hessian matrix. 



Disadvantages: 

1) Computational complexity: Although BFGS method avoids inverse operation, 

it still involves a large number of matrix multiplication, and the computational 

complexity is relatively high, especially for large-scale problems. 

2) Selection of initial matrix: For the estimation of the initial inverse Hessian 

matrix, the initial selection may have an impact on the performance of the 

algorithm. 

 

1.2.5 Adaptive Gradient 

The adaptive gradient method adaptively adjusts the step size based on the 

historical gradient information of each parameter. Specifically, the step size of each 

parameter gradually decreases over time, such that the parameter with a larger gradient 

during training has a smaller step size, while the parameter with a smaller gradient has 

a larger step size. 

Update: 

𝑠 ≔ 𝑠 + ∇𝑓0(𝐷) ∙ ∇𝑓0(𝐷) 

𝛾 ≔ 𝛾 −
𝛾0

√𝑠 + 𝜀
 

𝐷 ≔ 𝐷 − 𝛾∇𝑓0(𝐷) 
Where 

•   s is the cumulative gradient sum of squares, 

• γ0 is the global initial step,  

• ε is a small positive real number, which is used to prevent cases where 

the denominator is 0. 

Advantages: 

1) Each parameter has its own rhythm: parameters with larger gradients have 

smaller steps, while parameters with smaller gradients have larger steps. 

2) Adaptive step size: Adjust the step size adaptively according to the historical 

gradient information, so it can better adapt to the change of different 

parameters. With the number of iterations, the step size keeps shrinking, which 

also conforms to the intuitive idea that the step size is smaller when 

approaching the minimum value in the later stage. 

3) Sparse data adaptability: Due to the accumulation of historical gradient 

squares, adaptive gradient method can provide a larger step size for sparse 

gradient parameters, which is conducive to sparse data training. 

4) The cost of single-step calculation is small: the calculation of Lipschitz 

continuous parameters is avoided, the calculation is simplified, and many 

calculations are low-dimensional, and the calculation speed is fast. 

Disadvantages: 

1) Step size decays too quickly: As training progresses, the accumulated gradient 

square may become very large, causing the gradient to decay too quickly or 



even close to zero. In the early stage of iteration, the step size decays too fast, 

and the convergence speed is insufficient in the late stage, which even causes 

the algorithm to stop convergence in advance. 

2) No consideration of the stability of the gradient: The adaptive gradient method 

treats all historical gradient squares equally, without considering the stability 

of the gradient. In some cases, this can lead to over-scaling of the learning rate. 

3) Sensitive to initial global step: A given initial global step that is too small will 

result in convergence that is too slow, while a given initial global step that is 

too large will result in non-convergence. 

1.2.6 Improved Adaptive Gradient 

In order to avoid the shortcoming of the adaptive gradient method, the 

hyperparameter β can be added to evolve into the Root Mean Square Propagation 

method, that is, using β to carry the weighted moving average of the gradient square. 

The Adaptive Delta method can be developed by replacing the given β with Δγ, which 

is a first-order method to simulate the second-order Newton method. The Momentum 

method can also be integrated into Adaptive Momentum Estimation to further suppress 

oscillations. However, due to the high dimension of matrix A and D in this project, these 

methods often introduce a large amount of extra computation, but the improved effect 

often can not compensate for these extra computation, so the effect is often poor. 

Update: 

�̃�𝐷 = ‖𝐴𝐴𝑇‖2 + 0.1 

𝛾𝑠 =
1.9

�̃�𝐷

 

𝑠 ≔ 𝑠 + ∇𝑓0(𝐷) ∙ ∇𝑓0(𝐷) 

𝛾 ≔ 𝛾 −
𝛾𝑠

√𝑠 + 𝜀
 

𝐷 ≔ 𝐷 − 𝛾∇𝑓0(𝐷) 
Advantages: 

1) Inherits the advantages of adaptive gradient method: parameters with larger 

gradient have smaller step sizes, while parameters with smaller gradient have 

larger step sizes. And the step size can be adjusted adaptively according to the 

historical gradient information, so it can better adapt to the change of different 

parameters. With the number of iterations, the step size keeps shrinking, which 

also conforms to the intuitive idea that the step size is smaller when 

approaching the minimum value in the later stage. The calculation is low 

dimensional and the calculation speed is fast. 

2) Longer step length in the early stage: It avoids the artificial setting of the initial 

global step size, enhances the versatility of the method, and makes the step 

length in the early stage longer. 

3) Avoid excessive decay of the late step size: Because the function of Lipschitz 

parameter is used to constrain and estimate the step size, the decay effect of the 

late iteration is not obvious. At the same time, the stability of gradient is 



considered and excessive scaling of step size is avoided. 

Disadvantages: 

Poor effect on low dimensional problems: Because it still requires a lot of 

calculation, it is often not as good as Newton's method for low dimensional 

problems. 

In this project, the idea of adaptive incremental method is absorbed and the 

adaptive gradient method is improved. In the adaptive increment method, the change of 

step size Δγ is used to replace the given β for moving weighted average, but the 

oscillation is still large. In this project, a function of the Lipschitz parameter of each 

step is used instead of β, avoiding the disadvantage of the step decay too fast when all 

the global initial step size 𝛾0 is used, and the oscillation problem caused by the step 

size variation Δγ is avoided. Compared with adaptive gradient method and adaptive 

increment method, the calculation amount is increased, but it can greatly reduce the 

number of iteration steps, so the performance is greatly improved. 

1.2.7 Genetic Algorithm 

The basic idea of genetic algorithms (GAs) is to mimic the process of natural 

selection and evolution to optimize solutions to complex problems. Genetic algorithms 

operate on a population of potential solutions, using evolutionary operators such as 

selection, crossover, and mutation to iteratively improve the quality of solutions over 

generations. 

1. Selection Operator: 

Select individuals from the current population based on their fitness, with higher-

fitness individuals having a higher probability of being chosen. 

Update:                     

     𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

 

Where  𝑃𝑖 is the probability of selecting individual i, and 𝑓𝑖 is the fitness of individual 

i. 

2. Crossover Operator: 

Combine genetic information of two parents to create new individuals, simulating 

the crossover of genetic material in natural reproduction. 

Update:  

Offspring𝑖 =Crossover (Parentrandom1 , Parentrandom2) 

Where Crossover is a function that combines genetic information from two parents to 

create an offspring. 

3. Mutation Operator: 

Introduce small random changes to individual solutions, simulating genetic 

mutations. 

Advantages: 

1) Parallel Search: Genetic algorithms explore multiple potential solutions 

simultaneously, allowing for parallel search in the solution space. 

2) Global Search: GAs are well-suited for exploring a large and complex solution 



space, making them effective for global optimization problems. 

3) Adaptability: GAs can adapt to different types of problems without requiring 

a deep understanding of the problem structure. 

Disadvantages: 

1) Convergence Speed: Genetic algorithms might take more iterations to 

converge compared to some gradient-based methods, especially in problems 

where smoothness and continuity are crucial. 

2) Parameter Sensitivity: Performance can be sensitive to the choice of 

parameters such as mutation rate, crossover rate, and population size. 

3) Noisy or Discontinuous Fitness Functions: GAs may struggle with noisy or 

discontinuous fitness functions, as they rely on the evaluation of fitness to 

guide the search. 

In this project, first of all, the patch size is set as 8×8 pixels, and the patch interval 

of each row/column is 4 pixels. The size of a Dictionary is 100 atoms. 

Considering the genetic algorithm for D, 10 "genes" of the first generation D 

(parent generation) will be generated randomly, and each gene will contain 100 non-

repeating patches learned from the original image. 

After the K-generation "Dictionary" is generated by genetic algorithm, the 

appropriate A (Coefficient matrix) is found by gradient descent method for each "gene". 

The number of iterations is 12000 times, and the step size selection method is the same 

as the example code. 

After obtaining the A (Coefficient matrix) corresponding to the K-generation 

"Dictionary" and each "gene", the error is calculated for each Dictionary: 

𝐸 =
1

2
‖𝑋 − 𝐷𝐴‖𝐹

2
+ 𝜆‖𝐴‖0, 𝜆 = 0.5 

The two groups with the smallest E in the "gene" (denoted as D_1 and D_2) are 

directly inherited. Copy D_1 and D_2 three times each. The Atom of even-numbered 

positions in D_1 of the three groups of copied patches was randomly replaced with the 

first or last patch adjacent to each other in patches of the original map, and the Atom of 

even-numbered positions in D_2 of the three groups of copied patches was randomly 

replaced with any of the front and back 40 patches of patches of the original map for 

mutation. Then each Atom of D_1 and D_2 in the three groups after mutation is rotated 

forward to avoid the mutation of Atoms in fixed positions all the time. Further, two new 

"genes" are randomly generated using the same method as the initialization method. At 

this point, the obtained 2+2×3+2=10 "genes" is the k+1 generation "genes". 

For grayscale images, there is only one color channel and only one genetic 

algorithm cycle. For color images, the three RGB color channels will be iterated once 

by genetic algorithm, and finally the processed image will be pieced together. The 

symbol of the end of the iteration of genetic algorithm is that the two "genes" (D_1 and 

D_2) with the smallest E in the three successive generations of "genes" are the same. 



1.3 Basic summary of your obtained results. 

First, Figures 1.1 and 1.2 are the dictionaries learned using ℓ1-norm with soft-

thresholding shrinkage method with gradient descent.  

 

(a) Barbara               (b) Cameraman                 (c) Lena 

Figure 1.1 : Dictionary learned from three grayscale images. 

  

Figure 1.2 : the learned dictionary of McM14 

In addition, As shown in Figures 1.3 and 1.4, we use the genetic algorithm introduced in 1.2.7 to 

obtain the dictionary learning results for grayscale and color images. 

 

(a) Barbara               (b) Cameraman                 (c) Lena 

Figure 1.3 : Dictionary learned from three grayscale images. 

(Genetic Algorithm) 



 

Figure 1.4 : Dictionary learned from McM01 and McM04. 

(Genetic Algorithm) 

 

1.3.1 Evaluate the selected parameters 

The size of the patch, denoted by p, determines the dimensionality of the target 

representation vector. Increasing p significantly increases the number of rows in the 

matrix X. 

The step size gap during each iteration determines the number of patches. 

Reducing gap significantly increases the number of rows in matrix X, i.e., the number 

of vectors to be represented. 

The ratio of p to gap determines the number of times each pixel is learned. For 

example, if p = 9 and gap = 4, each pixel is, on average, learned 9 4⁄  times, and the 

final result is the average of these 9 4⁄  outcomes. Generally, when p is larger and gap 

is smaller, each pixel is learned more times, leading to more accurate results. However, 

at the same time, computational complexity significantly decreases with the increase of 

p and the decrease of gap. 

Taking the example of the color image McM01 (see table McM01.xlsx), if gap is 

fixed at 4 and p increases from 7 to 15, the average PSNR increases from 26.77 to 27.91. 

However, the computation time increases from about 10 minutes to about 1 hour. It's 

worth noting that PSNR does not monotonically increase with p; for example, when p 

increases to 17, PSNR shows a decreasing trend. If p is fixed at 15 and gap decreases 

from 6 to 3, the average PSNR increases from 27.45 to 28.02. The computation time 

increases from about 35 minutes to about 70 minutes. 

Table 1.1 The processing results color picture McM01 

 

size gap lambda mu R G B
9 4 1.5 50 24.86 24.69 24.67 24.74
9 4 1.5 90 27.88 27.5 27.22 27.53333
9 4 1.5 95 27.93 27.53 27.23 27.56333
9 4 1.5 100 27.92 27.5 27.18 27.53333
9 4 1.5 110 27.78 27.33 26.99 27.36667
9 4 1.5 200 25.42 27.76 24.63 25.93667
9 4 2 95 27.83 27.39 27.06 27.42667
9 4 1.2 95 26.97 26.67 25.51 26.38333
7 4 1.5 95 27.08 26.73 26.52 26.77667

11 4 1.5 95 28.12 27.71 27.36 27.73
13 4 1.5 95 28.25 27.88 27.47 27.86667
15 4 1.5 95 28.27 27.94 27.51 27.90667
17 4 1.5 95 28.25 27.93 27.45 27.87667
15 6 1.5 95 27.82 27.48 27.07 27.45667
15 3 1.5 95 28.41 28.07 27.6 28.02667



λ  is the regularization parameter during the learning process. The selected 

parameter is the ratio by which it is reduced every 500 iterations, without choosing an 

initial value. Empirically, the optimal range for this parameter is very small, around 1.5. 

μ is the regularization parameter during the reconstruction process. Its range is 

relatively large, and it has a significant impact on the results. Since adjusting μ does not 

change the computation time significantly, and adjusting μ only requires rerunning the 

reconstruction process, it is relatively fast. Therefore, μ is the key parameter to adjust. 

Empirically, adjusting μ follows the following rule: if the intensities of the RGB 

channels tend to be the same (e.g., RGB vector is μ, representing black (0, 0, 0), white 

(255, 255, 255), or middle gray), in this case, a larger μ leads to better results. For 

example, if McM04 is mainly composed of white, increasing μ from 100 to 450 

increases the average PSNR from 24.11 to 31.75. On the contrary, if the intensities of 

the RGB channels vary, such as green (255, 0, 0), red (0, 255, 0), blue (0, 0, 255), or 

combinations of two channels, a smaller μ leads to better results. If McM13 is mainly 

composed of yellow (255, 255, 0), the optimal value for μ is around 105.  

This phenomenon can be explained as follows: if the intensities of the RGB 

channels tend to be the same, random noise generally disrupts this pattern of identical 

channels. Since the dictionary D is learned from the original image, the channels of 

each atom in D are naturally the same. Therefore, D cannot capture different RGB 

patterns, and a lighter weight needs to be assigned to D, hence the need to increase the 

regularization parameter μ. 

By adjusting these parameters, we evaluated the impact on the pre-processing 

results, as shown in Table 1.2. 

Table 1.2 Evaluation of the effect of adjusting parameters 

 

1.3.2 Evaluate the descent method 

Firstly, in the case of grayscale images simple dictionary, we choose these descent 

methods: gradient descent method, Newton method, BFGS method, adaptive gradient 

p gap μ R G B mean

McM01 15 3 1.5 95 28.41 28.07 27.6 28.026667

McM02 9 4 1.5 150 30.1 30.69 29.9 30.23

McM03 13 4 1.5 260 29.96 29.73 28.78 29.49

McM04 9 4 1.5 450 32.18 32.48 30.63 31.763333

McM05 9 4 1.5 200 30.54 30.25 29.3 30.03

McM06 9 4 1.5 180 31.57 30.89 30.73 31.063333

McM07 13 4 1.5 200 30.95 30.9 30.34 30.73

McM08 9 4 1.5 350 32.23 32.87 32.44 32.513333

McM09 9 4 1.5 180 30.5 31.15 31.17 30.94

McM10 15 4 1.5 120 31.67 31.91 31.64 31.74

McM11 15 4 1.5 110 32.07 31.57 32.81 32.15

McM12 17 4 1.5 125 32.96 32.12 32.24 32.44

McM13 15 4 1.5 105 34.95 35.52 33.89 34.786667

McM14 15 4 1.5 125 33.23 33.75 32.25 33.076667

McM15 15 4 1.5 110 32.16 33.41 33.22 32.93

McM16 15 4 1.5 120 29.37 28.01 30.2 29.193333

McM17 17 4 1.5 110 29.16 29.08 29.43 29.223333

McM18 17 4 1.5 195 29.39 29.27 31.29 29.983333



method and improved adaptive gradient method. The single-step descent speed is 

shown in Figure 1.5. 

 

Figure 1.5 : Time of single step descent for different methods 

For the simple dictionary of grayscale images, except for the singular situation of 

conjugate gradient method which cannot be completed, all the other methods can meet 

the residual requirement by dropping all the time. Among them, in the conjugate 

gradient method, due to the characteristics of the initial value, the matrix singularity 

can not be completed due to the rounding of the computer's internal calculation, which 

also reflects one of the shortcomings of the conjugate gradient method. For Newton's 

method, because it needs to calculate the inverse matrix of Hessian matrix, it consumes 

a lot of time, resulting in a slow single step speed, which is also reflected in the learning 

of the improved dictionary of color graphs. In the adaptive gradient method, the global 

initial step size γ0=1 is set, although there are more operations in each step, many of 

them are low-dimensional or even scalar calculations, which is faster than the gradient 

descent method. 

In the case of improving the dictionary of color graph, we use several descent 

methods: gradient descent, Newton method, BFGS method, adaptive gradient method, 

improved adaptive gradient method. The decline speed of these five methods is 

compared, as shown in Figure 1.6. 



 

Figure 1.6 : Single-step descent times and iterative steps for different methods  

(both on a logarithmic scale, Where, Adaptive Gradient (γ≡1) is the Adaptive 

Gradient method, and Adaptive Gradient (γ=f(L_D)) is the improved one) 

the number of iteration of gradient descent method is about n=1314, and it takes 

about t=163s. Newton's method times out due to the need for a large number of high-

dimensional matrix inversion operations; The number of iterations of BFGS method is 

about n=1837, and it takes about t=288s. Although it avoids a large number of high-

dimensional matrix inversion operations of Newton's method, it still requires a large 

number of matrix multiplication operations, so its calculation amount is still greater 

than that of gradient descent method, and due to the rounding error of computer 

calculation, etc. The error of estimating the inverse matrix of Hessian matrix is still 

large, and the number of iterations is also higher than that of gradient descent method, 

so the effect is not good. Although the residuals of adaptive gradient method were once 

smaller than gradient descent method and BFGS method in the early stage, because the 

step size of adaptive gradient method declined too fast in the late stage, when the 

number of iteration steps exceeded 800, the residuals declined slowly and time out. The 

iterative times of the improved adaptive gradient method are about n=2, and it takes 

about t=0.3s. Because it combines the advantages of low computation of the gradient 

descent method and the adaptive gradient method, and the advantages of the Newton 

method for selecting the direction of descent, it can fall within the tolerance in two steps, 

and its calculation speed is significantly improved compared with the Newton method. 

In addition, we use genetic algorithm to process grayscale images. Corresponding 

PSNR values, corresponding processed images and patches are obtained. 



2.  Numerical results 

2.1  Task 3: color images denoising 

First, on the basis of the teacher's example code that uses LASSO to achieve images 

denoising, we modified part of the code to adapt to the color picture, and then adjust 

the parameters to get the optimal value. 

                     Table 2.1: PSNR values of 18 McM images. 

 
Table 2.2: PSNR values of 18 noised McM images. 

 

 

We select different parameters for dictionary learning and noise reduction of noisy 

images, and the change of parameters directly affects the learning of results. For 

example, in Figure 2.1, is the denoising effect in the McM03 image. 

Red Channel Green Channel Blue Channel Average of three

McM01 33.74234077 33.43900631 33.01178331 33.39771013

McM02 38.95979933 39.68324243 38.32986877 38.99097018

McM03 39.68729215 38.88349616 38.2285969 38.9331284

McM04 46.73540852 45.67196584 43.87278566 45.42672

McM05 43.21394135 43.77063341 42.24097149 43.07518209

McM06 40.71895106 40.428633 39.09874774 40.0821106

McM07 38.8511658 39.14353436 37.86531091 38.62000369

McM08 36.45161692 36.8425202 37.07822198 36.79078637

McM09 38.47959657 38.50774611 37.47669712 38.15467993

McM10 36.45836024 36.93582863 36.27720842 36.55713243

McM11 31.42377874 30.54075926 32.29899495 31.42117765

McM12 36.20240338 35.67748538 35.12188765 35.6672588

McM13 33.81113767 35.44479562 33.0388777 34.09827033

McM14 34.31555043 34.67013018 33.0649681 34.01688291

McM15 31.54718912 33.22585276 32.50959965 32.42754718

McM16 32.94289906 30.87191946 32.58082134 32.13187995

McM17 34.6886241 34.28128043 34.46157522 34.47715992

McM18 34.86225225 34.21650492 36.62239577 35.23371764

Red Channel Green Channel Blue Channel Average of three

McM01 22.10115807 22.08483094 22.12430702 22.10343201

McM02 22.08913362 22.12198734 22.11767621 22.10959906

McM03 22.11304449 22.12283435 22.10692433 22.11426773

McM04 22.10189385 22.11924021 22.13804614 22.11972673

McM05 22.11176981 22.09841174 22.1162559 22.10881248

McM06 22.09628357 22.10553808 22.11824368 22.10668844

McM07 22.10062112 22.11876386 22.12767328 22.11568609

McM08 22.10190861 22.11833707 22.10584304 22.10869624

McM09 22.1104843 22.10795686 22.09495662 22.10446593

McM10 22.09660069 22.12707287 22.12256991 22.11541449

McM11 22.11724931 22.10700275 22.1116296 22.11196055

McM12 22.12802877 22.10973469 22.09827413 22.11201253

McM13 22.10274646 22.09362642 22.1197805 22.10538446

McM14 22.10554975 22.09762833 22.10014095 22.10110634

McM15 22.11614555 22.09800552 22.12780957 22.11398688

McM16 22.09431187 22.09097603 22.10823505 22.09784098

McM17 22.10813582 22.1133089 22.10318871 22.10821115

McM18 22.12412012 22.12447466 22.13156204 22.12671894



 

(a) Bad               (b)Bad learn            (c)Bad Reconstruct   

 

(a) Good               (b)Good learn            (c)Good Reconstruct 

Figure 2.1 The effect of two different parameters 

(bad: p=9, gap=4, lambda=1.5, mu=100; good: size=13, gap=4, lambda=1.5, mu=260) 

In addition, we use genetic algorithm to process color images denoising. The 

corresponding PSNR values are obtained. 

Table 2.3 PSNR values of McM01~McM05 images. 

Image name 

PSNR 

R G B 

McM01 35.97 36.57 36.51 

McM02 34.07 37.56 36.45 

McM03 36.64 35.47 36.02 

McM04 34.73 34.80 34.11 

McM05 35.78 35.38 36.42 

 

 

2.2  Task 4: unknown ground truth 

 First, on the basis of the teacher's example code, we modified part of the code to 



adapt to the color picture, and then changed the initial value of C, so that it is not A, the 

following is the result of processing all the color pictures 
Table 2.4: PSNR values of 18 McM images 

 
In addition, we use genetic algorithm to process noisy color images. The 

corresponding PSNR values are obtained. 

Table 2.5 : PSNR values of McM01~McM05 images 

Image name 

PSNR 

R G B 

McM06 28.04 28.02 27.97 

McM07 26.70 26.60 26.35 

McM08 27.05 27.16 27.04 

McM09 27.52 27.62 27.64 

McM10 28.01 28.14 28.07 

 

3  Conclusion  

In this project, we delved into the realm of dictionary learning models and 

optimization algorithms to address the challenges of grayscale and color image 

processing. Our primary focus was on two key aspects: dictionary learning and descent 

methods. The following summarizes our findings and achievements: 

Red Channel Green Channel Blue Channel Average of three

McM01 27.92595343 27.51100511 27.18742932 27.54146262

McM02 27.91237562 28.20492661 27.94900716 28.02210313

McM03 22.9981419 23.34759287 22.90844308 23.08472595

McM04 23.15043474 23.06504338 23.05131553 23.08893122

McM05 25.70224221 25.69717377 25.69527792 25.6982313

McM06 27.81858896 27.60596751 27.65312206 27.69255951

McM07 27.07551246 27.07689752 26.927769 27.02672633

McM08 23.06431209 24.25402453 23.3882391 23.56885857

McM09 27.53240714 27.85671516 27.80861606 27.73257945

McM10 29.59086358 29.70017729 29.58519638 29.62541242

McM11 31.01329844 30.59382695 31.68776103 31.09829547

McM12 27.74099255 27.50450398 27.5595938 27.60169677

McM13 33.86120767 34.15122198 33.1288201 33.71374992

McM14 30.28492738 30.40622795 29.8700681 30.18707448

McM15 31.26021798 32.13185334 32.0249755 31.80568227

McM16 26.63149411 26.12766162 27.09579965 26.61831846

McM17 27.76367884 27.68189599 27.959469 27.80168128

McM18 25.4275817 25.42080227 25.82037007 25.55625134



We applied the ℓ1-norm with soft-thresholding shrinkage to grayscale images, 

demonstrating its efficacy in image denoising. The approach successfully reduced noise 

while preserving important features. And we also employ genetic algorithms tailored 

for non-convex optimization, we extended our work to color images. The model 

showcased its ability to adapt and optimize, showcasing promising results even in 

scenarios with unknown ground truth. 

We explored a variety of optimization algorithms to enhance the efficiency of our 

dictionary learning model. Each algorithm presented unique advantages, catering to 

different aspects of the problem: 

1) Gradient Descent: A fundamental optimization method, gradient descent, 

demonstrated its reliability in finding the minimum of the objective function. 

 

2) Conjugate Gradient: Offering improvements over gradient descent, the conjugate 

gradient method displayed faster convergence in certain cases. 

3) Newton’s Method: By utilizing second-order information, Newton’s method 

exhibited enhanced convergence, particularly beneficial for complex, non-linear 

problems. 

4) Broyden-Fletcher-Goldfarb-Shanno (BFGS): This quasi-Newton method further 

refined our optimization efforts, showing competitive performance in finding 

optimal solutions. 

5) Adaptive Gradient: We introduced the adaptive gradient algorithm, adapting 

learning rates to different parameters, enhancing the model's ability to converge 

efficiently. 

6) Improved Adaptive Gradient:** Building upon the adaptive gradient, our improved 

version fine-tuned the learning rates dynamically, aiming for more precise 

convergence. 

7) Genetic Algorithm: Incorporating genetic algorithms into the optimization process 

demonstrated versatility, especially in non-convex scenarios where traditional 

methods might struggle. 

Thorough evaluation of selected parameters led to optimized settings for our 

dictionary learning model, ensuring its effectiveness in grayscale image denoising. In 

addition, our investigation into descent methods revealed nuances in their performance, 

with certain methods excelling in specific scenarios. This information is valuable for 

selecting the most appropriate approach based on the characteristics of the problem at 

hand. 

In summary, we have conducted a comprehensive exploration of dictionary 

learning models and optimization algorithms through this project. These methods have 

been successfully applied to de-noising grayscale and color images, as well as valuable 

insights gained from parameter evaluation and descent method analysis 


