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This paper is mainly about wind speed prediction. To reduce the randomness in origin
wind speed data. a variety of signal decomposition techniques are applied. Including
EMD (Empirical Mode Decomposition), EEMD (Ensemble Empirical Mode Decom-
position), CEEMD (Complementary Ensemble Mode Decomposition), CEEMDAN
(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise), ICEEM-
DAN (Improved Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise), VMD (Variation Mode Decomposition) and EWT (Empirical Wavelet Trans-
form). After decomposition, different modes are fed to LSTM model respectively.
Prediction results are used to reconstruct wind speed. These techniques can greatly
improve wind prediction performance.
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I. KNOWLEDGE BACKGROUND

A. Introduction

With the rapid growth of today’s energy consumption, excessive consumption of tradi-
tional resources and the pollution of the environment problem increasingly serious. To deal
with global energy problem, the development of new energy has become a consensus around
the world. Wind power as a kind of widely distributed and abundant renewable energy,
is gaining more and more attention in the world gradually. The proportion of wind power
in power system is also increasing around the world. But the wind is uncertain and non-
stationary, which implies incorporating wind farm may have serious impact on the stability
of power system and its operation. Accurate prediction of wind speed, can not only reduce
the cost of power network operation1,2, but also is beneficial to the safety of wind power
grid.

B. Literature review

Wind speed starts from physical prediction, which is similar to numerical weather pre-
diction system. It gets humidity, pressure to predict the wind speed of the following day or
more days. However, considering its prediction accuracy, its scope of application is limited.3

Then wind speed prediction turns to statistical prediction models which are chiefly re-
flected in linear models, such as AR (Auto Regressive), MA (Moving Average), ARMA
(Auto Regressive Moving Average) and ARIMA (Auto Regressive Integrated Moving Av-
erage). However, due to the randomness and uncertainty of wind speed, the accuracy of
traditional statistical prediction models is often not up to the required height.

With the great popularity of artificial intelligence , models such as ANN (Artificial Neural
Network) and SVM (Support Vector Machine) has been widely accepted and adopted in
dealing with time series prediction. The insufficiency of these models has greatly constrained
their application in weed speed prediction. For example SVM is incapable in handling large
amount of data.

In recent years, deep learning has been widely applied in various fields and has obvious
advantages, which has won the attention and affection of many scholars. In particular,
RNNs with the capability of maintaining states between different inputs show advantages in
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handling time sequences, but suffers from problems like vanishing and exploding gradients.
LSTM, a variant of RNN (Recursive Neural Betwork), solves the problem by introducing
controlling gates to select main useful information and abandon useless information in the
process of propagating. LSTM has obvious advantages over other prediction models in
time series prediction. traditional learning methods in many fields such as handwriting
recognition4 and stock analysis5.

To tackle with nonlinear and non-stationary time series, Huang6 proposed the EMD (Em-
pirical Mode Decomposition) aiming to turn original non-stationary time series into a set
of stationary time series. Later proposed EEMD (Ensemble Empirical Mode Decomposi-
tion) was proposed to deal with ”mode mixing” problem of EMD7. To eliminate the error
caused by random noise, Huang et al. revised EEMD and proposed CEEMD8. To ensure
the completeness of signal decomposition, a novel CEEMDAN (Complete Ensemble Em-
pirical Mode Decomposition with Adaptive Noise) was proposed, which applies a iterative
method9. ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise) was proposed to avoid the overlapping in the scales in the first few modes
in CEEMDAN10. EMD and EMD-based methods are widely used today to recursively de-
compose a signal into different modes of unknown but separate spectral bands. Chen et al.
utilize CEEMDAN and BP neural network to predict short-term wind speed11.

However, EMD and EMD-based methods is known for limitations like sensitivity to noise
and sampling. K. Dragomiretskiy and D. Zosso proposed an entirely non-recursive VMD
(Variational Mode Decomposition) model, where the modes are extracted concurrently,
showing promising practical decomposition results12.

Another novel method called EWT (Empirical Wavelet Transform) also show its useful-
ness compared to the classic EMD. EWT is a new approach to build adaptive wavelets to
make prediction.13

C. Main contribution and chapter arrangement

The main contributions of this paper are the application of various signal decomposition
techniques and compare their performance. Specifically, this paper creatively apply VMD
and EWT to wind prediction and get good performance in contrast to other techniques.
The rest of this paper is arranged as follows: Section 2 mainly introduce the basic theory
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of different signal decomposition algorithm, including EMD, EEMD, CEEMD, ICEEMD,
VMD and EWT. Section 3 introduce the prediction model we applied in wind speed predic-
tion. In section 4, we do experiment to compare the performance between different signal
decomposition algorithm and make explanation. Finally, Section 5 gieves the conclusion of
this study.

II. SIGNAL DECOMPOSITION ALGORITHM

Signal decomposition techniques are able to decompose original wind speed data into
different modes with different features, thus reducing the randomness. Signals with less
randomness and high stabilization can improve the performance of subsequent models.

A. EMD

EMD (Empirical Mode Decomposition) is an adaptive method to analyze non-stationary
signals. It produces a local and fully data-driven separation of a signal in fast and slow oscil-
lations. At the end, the original signal can be expressed as a sum of amplitude and frequency
modulated (AM-FM) functions called Intrinsic Mode Functions (IMFs) and residual.

To be considered as an IMF, a signal must fulfill two conditions: (i) the number of
extrema (maxima and minima) and the number of zero-crossings must be equal or differ at
most by one; and (ii) the local mean, defined as the mean of upper and lower envelopes,
must be zero.
Let x be the original signal. The algorithm can be described as follows:

• Step 1.Set k = 0 and find all extrema of r0 = x.

• Step 2.Interpolate between minima (maxima) of rk to obtain the lower (upper) enve-
lope emin (emax).

• Step 3.Compute the IMF candidate dk+1 = rk −m.

• Step 4.Is dk+1 an IMF?

– Yes. Save dk+1, compute the residue rk+1 = x− Σk
i=1di, do k = k + 1, and treat

rk as input data in step 2.
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– No. Treat dk+1 as input data in step 2.

• Step 6.Continue until the final residue rK satisfies some predefined stopping criterion.

The local nature of the EMD may produce oscillations with very disparate scales in
one mode, or oscillations with similar scales in different modes. When this phenomenon is
undesirable, and similar scales for each mode are preferred, this consequence of the method
becomes a problem, named as ”mode mixing”.

B. EEMD

EEMD (Ensemble Empirical Mode Decomposition) is the ensemble version of EMD,
IMFs are obtained from an ensemble of the original signal plus different realizations of finite
variance white noise. By populating whole time-frequency space, EEMD reduces the mode
mixing. Thus, modes with similar scales are obtained. Let x be the original signal. The
algorithm can be described as follows:

• Step 1.Generate x(i) = x + βw(i), where w(i) (i = 1, ..., I) is a standard normal dis-
tribution white noise. β > 0 is a hyperparameter to adjust the variance of the white
noise.

• Step 2.Decompose completely each x(i) (i = 1, ..., I) by EMD, obtaining the modes
d
(i)
k , where k = 1, ..., K indicates the mode.

• Step 3.Assign d̄k =
1
I
ΣI

i=1d
(i)
k .

It can be noticed that in EEMD, every x(i) is composed independently from other realiza-
tions and for every one of them a residue r(i)k =

(i)
k−1 −d

(i)
k is obtained at each stage, with no

connection between the different realizations. This situation is the cause of some EEMD
disadvantages: (i) Due to the randomness of white Gaussian noise, there will be reconstruc-
tion error. (ii) the decomposition is not complete and (iii) different realizations of signal
plus noise might produce different number of modes.

C. CEEMD

CEEMD (Complementary Empirical Mode Decomposition) is proposed in order to deal
with the reconstruction error. Noise is added in pairs to the original data (one positive and
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one negative) to generate two ensembles. However, there is still no guarantee that original
signal plus white noise produce the same number of modes and the completeness in mode
decomposition.

D. CEEMDAN

CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)
is proposed aiming to deal with the drawbacks of CEEMD. CEEMDAN apply iterative
method to complete signal decomposition. The general idea is as following: First, average
the first mode d̄1 from x(i) = x+ βw(i), which is exactly the same as EEMD. Then, the first
residue is obtained:r1 = x− d̄1. The second mode is obtained from averaging the first EMD
mode from the first residue plus first mode of white noise. The procedure continues until a
stopping criterion is reached.
Let x be the original signal. And denote Ek(·) be the operator which produces the kth mode
obtained by EMD. The algorithm of CEEMDAN is as following:

• Step 1.For every i = 1, ..., I decompose each x(i) = x+ β0w
(i) by EMD, obtaining the

first mode of each x(i) and average them to get the first mode of original signal

d̄1 =
1

I
ΣI

i=1E1(x
(i)).

• Step 2.At the first stage (k = 1) calculate the first residue

r1 = x− d̄1.

• Step 3.Obain the first mode of r1 + β1E1(w
(i)), i = 1, ..., I , by EMD and define the

second CEEMDAN mode as:

d̄2 =
1

I
ΣI

i=1E1(r1 + β1E1(w
(i))

• Step 4.For k = 2, ..., K calculate the kth residue:

rk = r(k−1) − d̄k.

• Step 5.Obtain the first mode of rk + βkEK(w
(i)), i = 1, ..., I ,by EMD until define the

(K + 1)th CEEMDAN mode as:

d̄(k+1) =
1

I
ΣI

i=1E1(rk + βkEk(w
(i))).
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• Step 6.Go to step 4 for the next k.

Iterate the steps 4 to 6 until the obtained residue cannot be further decomposed by EMD,
either because it satisfies IMF conditions or because it has less than three local extrema.
Observe that, by construction of CEEMDAN, the final residue satisfies:

x = ΣK
k=1d̄k + rK

ensuring the completeness property of the proposed decomposition and thus providing an
exact reconstruction of the original data. Despite this, CEEMDAN still has some aspects
in which it deserves to be improved:

• Recall the operator EK(·) and define new operator M(·) which produces the local
mean of the signal that is applied to. It can be noticed that E1(x) = x −M(x). Let
< · > be the action of averaging throughout the realizations. For the first EEMD and
original CEEMDAN modes we have:

d̄1 =< E1(x
(i)) >=< x(i) −M(x(i)) >=< x(i) > − < M(x(i)) >

The difference between < x(i) > and original signal contributes to the amount of noise.
So if we define:

d̄1 = x− < M(x(i)) >

In this way, the amount of noise present in the modes are reduced.

• There is a strong overlapping in the scales in the first few modes (Take first two
modes for example. The first mode are extracted adding white noise and the second
one adding E1(w

(i)))

E. ICEEMDAN

Taking into account the two previous aspects, here we propose ICEEMDAN. Recall the
operator EK(·) and M(·) and action < · >. The algorithm is as following:

• Step 1. Calculate by EMD the local means of x(i) = x+ β0E1(w
(i)) to obtain the first

residue
r1 =< M(x(i)) >
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• Step 2. At the first stage (k = 1) calculate the first mode:

d̄1 = x− r1

• Step 3. Estimate the second residue as the average of local means of r1 + β1E2(w
(i))

and define the second mode:

d̄2 = r1 − r2 = r1− < M(r1 + β1E2(w
(i))) >

• Step 4. For k = 3, ..., K calculate the kth residue

rk =< M(rk−1 + βk−1Ek(w
(i))) >

• Step 5. Compute the kth mode

d̄k = rk−1 − rk

• Step 6. Go to step 4 for next k.

F. VMD

There is a slightly different definition of IMF in VMD. IMF are amplitude-modulated-
frequency-modulated (AM-FM) signals, written as:

uK(t) = Ak(t) cos(ϕk(t)),

where the phase ϕk(t) is a non decreasing function, ϕ′
k(t) ≥ 0, the envelope is non-negative

Ak(t) ≥ 0, and both the envelope Ak(t) ≥ 0 and the instantaneous frequency ωk(t) :=

ϕ′
k(t) ≥ 0 vary much slower than the phase ϕk(t).

The goal of VMD is to decompose a real valued input signal f into a discrete number of
IMFs. And each IMF should be mostly compact around a center pulsation ωk.

In order to assess the bandwidth of a mode, we propose the following scheme: 1) for
each mode uk, compute the associate analytic signal by means of Hilbert transform in order
to obtain a unilateral frequency spectrum. 2) for each mode, shift the mode’s frequency
spectrum to ”baseband”, by mixing with an exponential tuned to the respective estimated
center frequency. 3) The bandwidth is now estimated through the H1 Gaussian smoothness
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of the demodulated signal, i.e. the squared L2-norm of the gradient. The result constrained
variational problem is the following:

min
{uk},{ωk}

{
K∑
k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk = f

where f is the original signal. uk := u1, ..., uK and ωk := ω1, ..., ωK are notations for the set
of all modes and their center frequencies, respectively.

We make use of both a quadratic term α and Lagrangian multipliers λ in order to render
the problem unconstrained. Therefore, we introduce the augmented Lagrangian L as follows:

L ({uk},{ωk}, λ) :=α
∑
k

∥∥∥∥∂t[(δ(t)+ j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥f(t)−∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

∑
k

uk(t)

〉
.

The solution to the original minimization problem is now found as the saddle point of
the augmented Lagrangian L in a sequence of iterative sub-optimizations called alternate
direction method of multipliers (ADMM). In the process of finding saddle point, uk, ωk, λk
are updated.

ûn+1
k (ω) =

f̂(ω)−
∑

i ̸=k ûi(ω) +
λ̂(ω)
2

1 + 2α(ω − ωk)2

ωn+1
k =

∫∞
0
ω |ûk(ω)|2 dω∫∞

0
|ûk(ω)|2 dω

λn+1 ← λn + τ

(
f −

∑
k

un+1
k

)
until convergence:Σk∥un+1

k − unK∥22/∥unk∥22 < ϵ

G. EWT

EWT combines the strength of wavelet’s formalism with the adaptability of EMD. The
main idea is to extract the different modes of a signal by designing an appropriate wavelet
filter bank. This construction leads us to a new wavelet transform, called the empirical
wavelet transform. From the Fourier point of view, decomposition is equivalent to building a
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set of bandpass filters. Assume that the Fourier support [0, π] is segmented intoN contiguous
segments. We denote ωn to be the limits between each segments (where ω0 = 0 and ωN = π).
Each segment is denoted Λn = [ωn−1, ωn], then it is easy to see that

⋃N
n=1 = [0, π].Centered

around each ωn, we define a transition phase of width 2τn.

The empirical wavelets are defined as bandpass filters on each Λn. Utilizing the idea used
in the construction of both Littlewood-Paley and Meyer’s wavelets, we define the empirical
scaling function and the empirical wavelets.

ϕ̂n(ω) =


1 if |ω| ≤ (1− γ)ωn

cos
[
π
2
β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise

and

ψ̂n(ω) =



1 if (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[
π
2
β
(

1
2γωn+1

(|ω| − (1− γ)ωn+1)
)]

if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[
π
2
β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise

where we have chosen τn proportional to ωn : τn = γωn, where 0 < γ < 1. And β(x) is most
used as

β(x) = x4(35− 84x+ 70x2 − 20x3)

Then the detail coefficients and the approximation coefficients are defined as:

WE
f (n, t) = ⟨f, ψn⟩ =

∫
f(τ)ψn(τ − t)dτ

WE
f (0, t) = ⟨f, ϕ1⟩ =

∫
f(τ)ϕ1(τ − t)dτ

The empirical mode fk is given by

f0(t) =WE
f (0, t) ∗ ϕ1(t)

fk(t) =WE
f (k, t) ∗ ψk(t)
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III. PREDICTION MODEL

The prediction model we choose is LSTM model. The LSTM (Long Short Term Mem-
ory) recurrent network is a special RNN (recurrent neural network) model. As discussed by
(Bengio et al.), the RNN approach has the weakness of long-term dependency in practical
applications. To overcome the major constraint of RNN model, (Hochreiter and Schmid-
huber) developed a LSTM algorithm which is more suitable for processing and predicting
important events with relatively long intervals and delays in time series. The network has
been widely used in image text recognition, image processing, video data recognition and
other fields. As shown in FIG. 1, the main structure of LSTM is a memory block with three

FIG. 1. EMD result

gates and a memory cell. Mathematically, the LSTM algorithm is composed of six core
equations, governed by

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bc)
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Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)

where · is matrix multiplication, ∗ is element-wise multiplication. ft, it, C̃t, Ct, ot and ht are
process functions. Wf ,Wi,WC and Wo are wights, bf , bi, bc and bo are bias. Here Eq.(4)
denotes information selection stage or forgetting stage. This stage is mainly to selectively
forget the input information from the previous moment. Useless information is filtered by
this gate. Eq.(5) - Eq.(7) is the processing stage. Input gate selectively remembers the
current input. Therefore current state is updated based on the combination of past and
current useful information. Eq.(8)-Eq.(9) is the information output stages, the updated
information will be outputted after the appropriate evaluation by output gate.

IV. EXPERIMENTS AND RESULT ANALYSIS

The process of our experiments are as following:

• Step 1. Fill Missing values of original wind speed.

• Step 2. Decompose wind speed using different signal decomposition algorithms.

• Step 3. Normalize each mode respectively.

• Step 4. For each mode, train a LSTM model and predict respectively.

• Step 5. Reconstruct wind speed.

A. Superiority of Signal Decomposition

In this subsection, we compare prediction performance between emd signal decomposition
and no decomposition process. Here is the result of EMD.
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FIG. 2. EMD result

Here is the prediction result

FIG. 3. Comparison between EMD and no signal decomposition

Here is the performance
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EMD no signal decomposition

rmse 0.4772 0.8140

correlation coefficient 0.9109 0.7103

TABLE I. Compare between emd signal decomposition and no decomposition

It is obvious that EMD has greatly improved the stability of input wind speed signal,
thus has better prediction performance.

B. Comparison Between Different Signal Decomposition Algorithms

Follow the steps above. We get the performance of different signal decomposition algo-
rithms as follows:

EMD EEMD CEEMD CEEMDAD ICEEMDAN VMD EWT

rmse 0.4772 0.4423 0.4213 0.4395 0.4376 0.3098 0.3388

correlation coefficient 0.9109 0.9242 0.9371 0.9267 0.9258 0.9634 0.9561

TABLE II. Comparison Between Different Signal Decomposition Algorithms

The following is the overall prediction performance:

FIG. 4. Comparison Between Different Signal Decomposition Algorithms
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The following is part of the previous graph:

FIG. 5. Zoom in of the previous graph

V. CONCLUSION

Result shows that VMD has the best performance, and EWT is the second. And those
modified EMD seems to have little improvement on EMD.
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