
Numerical investigation of linear advection
equation with SUPG method

Duan Xu 123010910069

June 12, 2024

1



1 Introduction
In this paper, the solution of the linear advection equation is investigated with finite
element method (FEM).

The advection equation discussed is as follows:

β · ∇u = f (1)

where β is a vector field that describes the advection direction and speed (which
may be dependent on the space variables if β = β(x), f is a source function, and u is
the solution. The physical process that this equation describes is that of a given flow
field β, with which another substance is transported, the density or concentration of
which is given by u. The equation does not contain diffusion of this second species
within its carrier substance, but there are source terms f .

At the inflow, the above equation is augmented by boundary conditions:

u = g, x ∈ ∂Ω− (2)

where ∂Ω− is where the substance is transported in, defined by

∂Ω− = {x : β · n(x) < 0}

where n(x) is the normal vector of the field pointing outwards.
No boundary condition should be imposed at the outflow ∂Ω+.
This equation cannot be solved in a stable way using the standard finite element

method. The problem is that solutions to this equation possess insufficient regu-
larity perpendicular to the transport direction: while they are smooth along the
streamlines defined by the flow field β, they may be discontinuous perpendicular to
this direction. This is easy to understand: what the equation β · ∇u = f means is
in essence that the rate of change of u in direction β equals f . But the equation has
no implications for the derivatives in the perpendicular direction, and consequently
if f is discontinuous at a point on the inflow boundary, then this discontinuity will
simply be transported along the streamline of the wind field that starts at this
boundary point. These discontinuities lead to numerical instabilities that make a
stable solution by a standard continuous finite element discretization impossible.

A standard approach to address this difficulty is the "streamline-upwind Petrov-
Galerkin" (SUPG) method, sometimes also called the streamline diffusion method[1].

The computation conducted in this paper is under the framework of deal.II[2].

1



2 Numerical method
This section serves for three aims:

1. Weak form of the linear advection equation is formulated.

2. Developed a simple criterion for mesh refinement.

3. Multiple threads is employed to expedite the assembly process of finite element
matrices within a multi-processor machine.

2.1 SUPG

To develop the weak form of the equation, instead of multiplying the equation by a
test function v, we multiply v + δβ · ∇v to the advection equation and integrate in
the domain. δ is a parameter that is chosen in the range of the (local) mesh width
h.

(v + δβ · ∇v,β · ∇u)Ω = (v + δβ · ∇v, f)Ω (3)

where (f, g)Ω =
∫
f · gdΩ

And for the inflow condition, another weight function w is multiplied giving

(w, u)∂Ω− = (w, g)∂Ω− (4)

For SUPG, w is chosen to be β · nv, so

(β · nv, u)∂Ω− = (β · nv, g)∂Ω− (5)

Combining 3 and 5, the ensuing equation is derived

(v + δβ · ∇v,β · ∇u)Ω − (β · nv, u)∂Ω− = (v + δβ · ∇v, f)Ω − (β · nv, g)∂Ω− (6)

Write the solution as a combination of base functions

u ≈ Σn
i=1U

e
i ϕi (7)

Since equation 6 hold for any weight functionϕi, we can develop the element
equation

AKuK = FK (8)

where
AK

ij = (ϕi + δβ · ∇ϕi,β · ∇ϕj)Ω − (β · nϕi, ϕj)∂Ω−

FK
i = (ϕi + δβ · ∇ϕi, f)Ω − (β · nϕi, g)∂Ω−

(9)

The SUPG method enhance stability by introducing extra diffusion terms. To
see this, the modified differential equations based on the weak form developed above
is derived to contrast the original linear advection equation. Take out the first term
on the left hand from equation 6 and expand

(v + δβ · ∇v,β · ∇u)Ω = (v,β · ∇u)Ω + (δβ · ∇v,β · ∇u)Ω (10)

2



The second term in 10 can be written as (negelecting boundary term)

(δβ · ∇v,β · ∇u)Ω = −(v, δ(β · ∇)2u) (11)

Hence the weak form is transform to

(v,β · ∇u− δ(β · ∇)2u) (12)

which indicates the modified differential equation

β · ∇u− δ(β · ∇)2u = f (13)

Where the term −δ(β · ∇)2u is the added diffution term used to enhance stability.

2.2 Mesh refinement

To adaptively refine mesh in finite element method, it is common to use an error
estimator first developed by Kelly et al.[3], which assigns to each cell K the following
indicator:

ηK =

(
hK

24

∫
∂K

[∂nuh]
2dσ
)1/2

(14)

where [∂nuh] denotes the jump of the normal derivatives across a face γ ⊂ ∂K of
the cell K. It can be shown that this error indicator uses a discrete analogue of the
second derivatives, weighted by a power of the cell size that is adjusted to the linear
elements assumed to be in use here:

ηK ≈ Ch||∇2u||K (15)

which itself is related to the error size in the energy norm.
The problem with this error indicator in the present case is that it assumes

that the exact solution possesses second derivatives. Although most problems allow
solutions in H2, solution of advection problem does not belongs to the category.
If solutions are only in H1, then the second derivatives would be singular in some
parts (of lower dimension) of the domain and the error indicators would not reduce
there under mesh refinement. Thus, the algorithm would continuously refine the
cells around these parts, i.e. would refine into points or lines (in 2d).

For advection equation, the solution does not even belongs to H1, so the error
indicator described above is not really applicable. Hence an indicator that is based
on a discrete approximation of the gradient is needed. To start with, it is noted
that given two cells K,K ′ of which the centers are connected by the vector yKK′ ,
The directional derivative of the function u can be approximated with the following
methodology

yT
KK′

|yKK′|
∇u ≈ u(K ′)− u(K)

|yKK′ |
(16)

where u(K) and u(K ′) denote u evaluated at the centers of the respective cells. Now
multiply the above approximation by yKK′/|yKK′| and sum over all neighbors K ′ of
K: (∑

K′

yKK′yT
KK′

|yKK′ |2

)
︸ ︷︷ ︸

=:Y

∇u ≈
∑
K′

yKK′

|yKK′|
u(K ′)− u(K)

|yKK′|
(17)

3



If the vectors yKK′ connecting K with its neighbors span the whole space (i.e.
roughly: K has neighbors in all directions), then the term in parentheses in the left
hand side expression forms a regular matrix, which can be inverted to obtain an
approximation of the gradient of u on K:

∇u ≈ Y −1

(∑
K′

yKK′

|yKK′|
u(K ′)− u(K)

|yKK′ |

)
. (18)

Denote the approximation on the right hand side by ∇hu(K), and the following
quantity is used as refinement criterion:

ηK = h1+d/2|∇huh(K)| (19)

2.3 Work streams

In FEM, there are considerable independent jobs: for example, assembling local
contributions to the global linear system on each cell of a mesh; evaluating an error
estimator on each cell; or postprocessing on each cell computed data for output fall
into this class. These cases can be treated using a software design pattern we call
WorkStream[4].

In the traditional way, the system matrix is assembled independently and the
WorkStream schedules each task, the implementation looks like:

template <in t dim>
void MyClass<dim >: : assemble_system ( )
{

WorkStream : : run ( dof_handler . beg in_act ive ( ) ,
dof_handler . end ( ) ,
∗ th i s ,
&MyClass<dim >: : assemble_on_one_cell ) ;

}

template <in t dim>
void MyClass<dim >: : assemble_on_one_cell (

const typename DoFHandler<dim >: : a c t i v e_c e l l_ i t e r a t o r &c e l l )
{

FEValues<dim> fe_values ;
Ful lMatrix<double> ce l l_matr ix ;
Vector<double> ce l l_rh s ;

// assemble l o c a l c on t r i bu t i on s
fe_values . r e i n i t ( c e l l ) ;
f o r ( unsigned i n t i =0; i<f e . do f s_per_ce l l ; ++i )

f o r ( unsigned i n t j =0; j<f e . dof s_per_ce l l ; ++j )
f o r ( unsigned i n t q=0; q<fe_values . n_quadrature_points ; ++q)

ce l l_matr ix ( i , j ) += . . . ;
. . . same f o r c e l l_rh s . . .

4



// now copy r e s u l t s i n to g l oba l system
std : : vector<unsigned int> dof_ind ice s ;
c e l l −>get_dof_indices ( do f_ind ice s ) ;
f o r ( unsigned i n t i =0; i<f e . do f s_per_ce l l ; ++i )

f o r ( unsigned i n t j =0; j<f e . do fs_per_ce l l ; ++j )
system_matrix . add ( do f_ind ice s [ i ] , do f_ind ice s [ j ] ,

ce l l_matr ix ( i , j ) ) ;
. . . same f o r rhs . . .

}

The problem here is that several tasks, each running MyClass::assemble_on_one_cell,
could potentially try to write into the object MyClass::system_matrix at the same
time. This could be avoided by explicit synchronisation using a Threads::Mutex
but this method is not efficient.

As a consequence, the way the WorkStream class is designed is to use two func-
tions: the MyClass::assemble_on_one_cell computes the local contributions and
stores them, and a second function, say MyClass::copy_local_to_global, that
copies the results computed on each cell into the global objects. So the implemen-
tation is like

s t r u c t PerTaskData {
FullMatrix<double> ce l l_matr ix ;
Vector<double> ce l l_rh s ;
s td : : vector<unsigned int> dof_ind ice s ;

}

template <in t dim>
void MyClass<dim >: : assemble_on_one_cell (

const typename DoFHandler<dim >: : a c t i v e_c e l l_ i t e r a t o r &c e l l ,
PerTaskData &data )
{

FEValues<dim> fe_values ;

data . ce l l_matr ix = 0 ;
data . c e l l_rh s = 0 ;

// assemble l o c a l c on t r i bu t i on s
fe_values . r e i n i t ( c e l l ) ;
f o r ( unsigned i n t i =0; i<f e . do f s_per_ce l l ; ++i )

f o r ( unsigned i n t j =0; j<f e . do fs_per_ce l l ; ++j )
f o r ( unsigned i n t q=0; q<fe_values . n_quadrature_points ; ++q)

data . ce l l_matr ix ( i , j ) += . . . ;
. . . same f o r c e l l_rh s . . .

c e l l −>get_dof_indices ( data . do f_ind ice s ) ;
}

5



template <in t dim>
void MyClass<dim >: : copy_local_to_global ( const PerTaskData &data )
{

f o r ( unsigned i n t i =0; i<f e . do f s_per_ce l l ; ++i )
f o r ( unsigned i n t j =0; j<f e . do fs_per_ce l l ; ++j )

system_matrix . add ( data . do f_ind ice s [ i ] , data . do f_ind ice s [ j ] ,
data . ce l l_matr ix ( i , j ) ) ;

. . . same f o r rhs . . .
}

template <in t dim>
void MyClass<dim >: : assemble_system ( )
{

PerTaskData per_task_data ;

WorkStream : : run ( dof_handler . beg in_act ive ( ) , dof_handler . end ( ) ,
∗ th i s ,
&MyClass<dim >: : assemble_on_one_cell ,
&MyClass<dim >: : copy_local_to_global ,
per_task_data ) ;

}

There are two keys in the implementation:

1. The MyClass::copy_local_to_global never runs more than once in parallel,
so the system matrix will never be written by more than one tasks at the same
time.

2. The object called PerTaskData that is designed to store local infomation will
be passed first to one of possibly several instances of MyClass::assemble_on_one_cell
running in parallel which fills it with the data obtained on a single cell, and
then to a sequentially running MyClass::copy_local_to_global that copies
data into the global object. In practice, these objects are recyled after being
used to increase efficiency.

2.4 Other Details on the finite element method

The Lagrange fifth-order rectangular element is used to describe the mesh. In two
dimension, there are 36 dofs each element, i.e., 36 nodes, 36 base functions, the
dimension of cell matrix is also 36. In three dimension, there are 216 dofs each
element.

Method of numerical integration is sixth-order Gauss-Legendre quadrature, i.e.,
there are 36 quadrature points in two dimension and 216 quadrature points in three
dimension each element.

The system matrix is stored as a sparse matrix to save storage and computing
time. It is solved with a GMRES (Generalized Minimum RESidual) solver with
maximum relative error 10−1.

6



3 Result discussion

3.1 Test case

For the problem solved in this paper, the domain and functions are given by (d = 2, 3
is the space dimension):

Ω =[−1, 1]d

β(x) =

(
2

1 + 4
5
sin(8πx)

)
s =0.1

f(x) =

{
1

10sd
for |x− x0| < s,

0 else.
x0 =

(
−3

4

−3
4

)
g(x) =e5(1−|x|2) sin(16π|x|2)

δ =0.1h (h is element length)

(20)

For d = 3, we extend β and x0 by simply duplicating the last of the components
shown above one more time.

The input functions have the following meaning:

1. The advection field β transports the solution roughly in diagonal direction
from lower left to upper right, but with a wiggle structure superimposed.

2. The right hand side adds to the field generated by the inflow boundary condi-
tions a blob in the lower left corner, which is then transported along.

3. The inflow boundary conditions impose a weighted sinusoidal structure that
is transported along with the flow field.

3.2 Convergence

The average value defined by

ū =
1

2d

∫
Ω

udΩ

are used to test convergence.
In 2-dimensional case, the computation is conducted for 6 times, refine grid each

time.

7



Table 1: The number of cells and number of dofs in each cycle in 2-dimensional case

cycle Number of cells Number of dofs ū
1 64 1681 0.162351
2 121 3436 0.164961
3 238 6487 0.166480
4 481 13510 0.168481
5 958 26137 0.168079
6 1906 52832 0.169026

In 3-dimensional case, the computation is conducted for 3 times, refine grid each
time.

Table 2: The number of cells and number of dofs in each cycle in 3-dimensional case

cycle Number of cells Number of dofs ū
1 64 9261 0.0172231
2 197 30443 0.0192791
3 701 104231 0.0199108

The outcomes in both two-dimensional and three-dimensional analysis consis-
tently demonstrate favorable convergence properties.

3.3 Results in 2-dimension

In 2-dimensional case, we show the grid and solution when cycle = 3, 6

(a) Grid (b) Solution

Figure 1: The grid and solution when cycle = 3

8



(a) Grid (b) Solution

Figure 2: The grid and solution when cycle = 6

The result shows that:

1. Variable u is transported along the wiggly advection field from the left and
lower boundaries to the top right, as expected.

2. The comparison between plots shows that finer grid captures more complex
wiggles. The grid shown above is well-adapted to resolve these features.

3.4 Results in 3-dimension

In 3-dimensional case, we show the grid and solution when cycle = 1, 3

(a) Grid (b) Solution

Figure 3: The grid and solution when cycle = 1

9



(a) Grid (b) Solution

Figure 4: The grid and solution when cycle = 3

The result in three-dimension shows similar features as in two-dimension.

4 Conclusion
1. The SUPG method shows great stability in solving linear advection equation.

The intense variation in the direction normal to the advection field is well
captured.

2. The proposed mesh refinement criterion performs well in adapting the grid to
resolve the wiggles in solution.

3. Parallel computing and multi-threads can be well-utilized in FEM to improve
efficiency.

10



References
[1] H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite Elements and Fast Iterative

Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathe-
matics and Scientific Computation. Oxford University Press, Oxford, New York,
2005.

[2] Daniel Arndt, Wolfgang Bangerth, et al. The deal.II Library, Version 9.5.
Journal of Numerical Mathematics, 2023, 43(3), 231-246.

[3] D.W. Kelly, J.P. De S. R. Gago, O.C. Zienkiewicz, and I. Babuska. A poste-
riori error analysis and adaptive processes in the finite element method: Part
I–error analysis. International Journal for Numerical Methods in Engineering,
19:1593–1619, 1983.

[4] Bruno Turcksin and Martin Kronbichler and Wolfgang Bangerth. WorkStream –
a design pattern for multicore-enabled finite element computations. ACM Trans-
actions on Mathematical Software, vol. 43, pp. 2/1-29, 2016.

11


	Introduction
	Numerical method
	SUPG
	Mesh refinement
	Work streams
	Other Details on the finite element method

	Result discussion
	Test case
	Convergence
	Results in 2-dimension
	Results in 3-dimension

	Conclusion

